Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 356: 120573, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479289

RESUMO

Anaerobic co-fermentation is a favorable way to convert agricultural waste, such as swine manure (SM) and apple waste (AW), into lactic acid (LA) through microbial action. However, the limited hydrolysis of organic matter remains a main challenge in the anaerobic co-fermentation process. Therefore, this work aims to deeply understand the impact of cellulase (C) and protease (P) ratios on LA production during the anaerobic co-fermentation of SM with AW. Results showed that the combined use of cellulase and protease significantly improved the hydrolysis during the enzymatic pretreatment, thus enhancing the LA production in anaerobic acidification. The highest LA reached 41.02 ± 2.09 g/L within 12 days at the ratio of C/P = 1:3, which was approximately 1.26-fold of that in the control. After a C/P = 1:3 pretreatment, a significant SCOD release of 45.34 ± 2.87 g/L was achieved, which was 1.13 times the amount in the control. Moreover, improved LA production was also attributed to the release of large amounts of soluble carbohydrates and proteins with enzymatic pretreated SM and AW. The bacterial community analysis revealed that the hydrolytic bacteria Romboutsia and Clostridium_sensu_stricto_1 were enriched after enzyme pretreatment, and Lactobacillus was the dominant bacteria for LA production. This study provides an eco-friendly technology to enhance hydrolysis by enzymatic pretreatment and improve LA production during anaerobic fermentation.


Assuntos
Celulases , Malus , Animais , Suínos , Fermentação , Esterco/microbiologia , Ácido Láctico , Bactérias , Peptídeo Hidrolases
2.
Adv Mater ; 36(10): e2209633, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36722360

RESUMO

Fe-N-C single-atom catalysts (SACs) exhibit excellent peroxidase (POD)-like catalytic activity, owing to their well-defined isolated iron active sites on the carbon substrate, which effectively mimic the structure of natural peroxidase's active center. To further meet the requirements of diverse biosensing applications, SAC POD-like activity still needs to be continuously enhanced. Herein, a phosphorus (P) heteroatom is introduced to boost the POD-like activity of Fe-N-C SACs. A 1D carbon nanowire (FeNCP/NW) catalyst with enriched Fe-N4 active sites is designed and synthesized, and P atoms are doped in the carbon matrix to affect the Fe center through long-range interaction. The experimental results show that the P-doping process can boost the POD-like activity more than the non-P-doped one, with excellent selectivity and stability. The mechanism analysis results show that the introduction of P into SAC can greatly enhance POD-like activity initially, but its effect becomes insignificant with increasing amount of P. As a proof of concept, FeNCP/NW is employed in an enzyme cascade platform for highly sensitive colorimetric detection of the neurotransmitter acetylcholine.


Assuntos
Peroxidase , Peroxidases , Carbono , Corantes , Ferro , Fósforo
3.
Adv Mater ; 36(3): e2303714, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37471001

RESUMO

The integration of microorganisms and engineered artificial components has shown considerable promise for creating biohybrid microrobots. The unique features of microalgae make them attractive candidates as natural actuation materials for the design of biohybrid microrobotic systems. In this review, microalgae-based biohybrid microrobots are introduced for diverse biomedical and environmental applications. The distinct propulsion and phototaxis behaviors of green microalgae, as well as important properties from other photosynthetic microalga systems (blue-green algae and diatom) that are crucial to constructing powerful biohybrid microrobots, will be described first. Then the focus is on chemical and physical routes for functionalizing the algae surface with diverse reactive materials toward the fabrication of advanced biohybrid microalgae robots. Finally, representative applications of such algae-driven microrobots are presented, including drug delivery, imaging, and water decontamination, highlighting the distinct advantages of these active biohybrid robots, along with future prospects and challenges.


Assuntos
Microalgas , Robótica
4.
J Agric Food Chem ; 71(31): 12061-12069, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524372

RESUMO

Praziquantel (PZQ) is administered as a racemic mixture during swine production to treat parasitic diseases. Despite its widespread application, the pharmacokinetics, residue depletion, bioactivity, and toxicity of PZQ enantiomers in swine remain largely unknown. In this study, a systematic investigation of the pharmacokinetics, tissue distribution, and residue depletion of PZQ, its major metabolites (trans- and cis-4-OH-PZQ), and their enantiomers was conducted in swine. The findings indicated that PZQ was absorbed and metabolized rapidly. In swine plasma, the concentrations of S-PZQ, S-trans-4-OH-PZQ, and R-cis-4-OH-PZQ were higher than those of their respective enantiomers. The three analytes exhibited significant tissue distribution and stereoselectivity in 10 swine tissues. Notably, the two enantiomers of PZQ demonstrated comparable tissue concentrations except in the liver and lung. Moreover, the concentrations of S-trans-4-OH-PZQ and R-cis-4-OH-PZQ were higher than those of their respective enantiomers in the 10 tissues. This study has significant implications for the development of rational dosing strategies, reducing drug usage, and minimizing side effects, as well as accurately assessing the risks associated with PZQ administration and, by extension, other chiral drugs. Furthermore, it lays a theoretical foundation for the future use of the active enantiomer, R-PZQ.


Assuntos
Fígado , Praziquantel , Animais , Suínos , Fígado/metabolismo , Estereoisomerismo
5.
ACS Appl Mater Interfaces ; 15(19): 23353-23360, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37140917

RESUMO

Bismuth metal is regarded as a promising magnesium storage anode material for magnesium-ion batteries due to its high theoretical volumetric capacity and a low alloying potential versus magnesium metal. However, the design of highly dispersed bismuth-based composite nanoparticles is always used to achieve efficient magnesium storage, which is adverse to the development of high-density storage. Herein, a bismuth nanoparticle-embedded carbon microrod (Bi⊂CM), which is prepared via annealing of the bismuth metal-organic framework (Bi-MOF), is developed for high-rate magnesium storage. The use of the Bi-MOF precursor synthesized at an optimized solvothermal temperature of 120 °C benefits the formation of the Bi⊂CM-120 composite with a robust structure and a high carbon content. As a result, the as-prepared Bi⊂CM-120 anode compared to pure Bi and other Bi⊂CM anodes exhibits the best rate performance of magnesium storage at various current densities from 0.05 to 3 A g-1. For example, the reversible capacity of the Bi⊂CM-120 anode at 3 A g-1 is ∼17 times higher than that of the pure Bi anode. This performance is also competitive among those of the previously reported Bi-based anodes. Importantly, the microrod structure of the Bi⊂CM-120 anode material remained upon cycling, indicative of good cycling stability.

6.
Micromachines (Basel) ; 15(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38258150

RESUMO

Fiber lasers are commonly used in many industrial applications, such as cutting, welding, marking, and additive manufacturing. In a fiber laser system, the driver of a pumping source using a laser diode (LD) module and its dynamic control capability directly affect the performance of the fiber laser system. The commercial design of pumping source drivers for high-power fiber lasers is mainly based on a linear-type DC power supply, which has two major drawbacks, i.e., lower efficiency and bulk. In this regard, this paper proposes for the first time a new design approach with a programmable switching mode laser diode driver using a power semiconductor device (PSD)-based full-bridge phase-shifted (FB-PS) DC-DC converter for driving a 200 W optical power laser diode module. In this paper, the characteristics of a laser diode module and the system configuration of the proposed laser diode driver are first introduced. Then, a current control scheme using the concept of phase angle shifting to achieve a fast dynamic current tracking feature is explained. The proposed current control technique with a fully digital control scheme is then addressed. Next, dynamic mathematical models of the laser diode driver system and controllers are derived, and the quantitative design detail of the controller is presented. To confirm the correctness of the proposed control scheme, a simulation study on a typical control case is performed in PSIM 9.1 software environment. To verify the effectiveness of the proposed LD driver, a digital signal processor is then used as the control core to construct a hardware prototype implementation for performing experimental tests. Results obtained from simulation and hardware tests show highly satisfactory driving performances in the laser diode's output current command tracking control.

7.
Nutrients ; 14(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36558377

RESUMO

Global air pollution and diesel exhaust particles (DEPs) generated by intratracheal instillation aggravate asthma. In this study, we evaluated the effect of probiotics via tracheal- or oral-route administration on allergies or asthma. We continuously perfused rats daily, using the oral and tracheal routes, with approximately 106-108 CFU probiotics, for 4 weeks. During this period, we used OVA-sensitized rats to build the asthma models. We orally or intratracheally administered Lactobacillus paracasei 33 (LP33) to the rats, which reduced the number of total inflammatory cells, lymphocytes, and eosinophils in the bronchoalveolar-lavage fluid, the IgE concentration, and the cytokine levels of TH2 cells, but we found no significant difference in the cytokine levels of TH1 cells. LP33 can be used to prevent asthmatic allergic reactions induced by aerosol particles. Nevertheless, the dosage form or use of LP33 needs to be adjusted to reduce the irritation of lung tissues, which may produce lesions of the trachea. We observed that DEP dosage can alleviate emphysema, and that LP33 has a substantial effect on improving or slowing allergic asthma.


Assuntos
Asma , Hipersensibilidade , Probióticos , Ratos , Animais , Camundongos , Asma/prevenção & controle , Hipersensibilidade/prevenção & controle , Pulmão , Líquido da Lavagem Broncoalveolar , Citocinas , Probióticos/uso terapêutico , Ovalbumina , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
8.
Sci Adv ; 8(51): eade6455, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36563149

RESUMO

The function of robots in extreme environments is regarded as one of the major challenges facing robotics. Here, we demonstrate that acidophilic microalgae biomotors can maintain their swimming behavior over long periods of time in the harsh acidic environment of the stomach, thus enabling them to be applied for gastrointestinal (GI) delivery applications. The biomotors can also be functionalized with a wide range of cargos, ranging from small molecules to nanoparticles, without compromising their ability to self-propel under extreme conditions. Successful GI delivery of model payloads after oral administration of the acidophilic algae motors is confirmed using a murine model. By tuning the surface properties of cargos, it is possible to modulate their precise GI localization. Overall, our findings indicate that multifunctional acidophilic algae-based biomotors offer distinct advantages compared to traditional biohybrid platforms and hold great potential for GI-related biomedical applications.

9.
Microorganisms ; 10(10)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36296154

RESUMO

This study aimed to investigate the effects of Saccharomyces cerevisiae on rumen fermentation and the growth performance of heat-stressed goats. The fermentation experiment was conducted using Saccharomyces cerevisiae added at 0‱ (HS1), 0.30‱ (SC1), 0.60‱ (SC2), and 1.20‱ (SC3) of the dry matter (DM) weight of the basal diet. The results showed that supplementing with 0.60‱ (SC2) could increase the pH, acetic acid to propionic acid ratio, the concentrations of ammonia nitrogen, total volatile fatty acids, acetic acid, propionic acid, butyric acid, and the degradability of DM, neutral detergent fiber, and acid detergent fiber in rumen fluids of heat-stressed goats. In the feeding experiment, twelve heat-stressed goats were assigned to a 4 × 4 Latin square experimental design, and the Saccharomyces cerevisiae supplement levels are similar to the fermentation experiment above. Similar effects on rumen fermentation and digestibility parameters were obtained with a supplement with 0.60‱ of Saccharomyces cerevisiae (SC2A) compared to the fermentation trial. Moreover, in the SC2A group, the DM intake and average daily gain also increased significantly compared with other groups. These results suggested that a low dose of Saccharomyces cerevisiae can still effectively improve the rumen fermentation and growth performance of heat-stressed goats.

10.
Animals (Basel) ; 12(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139314

RESUMO

This study aimed to investigate the effect of the prophylactic feeding of Clostridium butyricum (CB), Saccharomyces cerevisiae (SC), and their mixture before the onset of heat stress on the rumen fermentation and growth performance of goats, and subsequently, on heat stress status. Forty-eight male Macheng Black × Boer crossed goats (22.25 ± 4.26 kg) were divided into four groups­the control group (fed the basal diet), and the CB (0.05% CB added to the basal diet), SC (0.60% SC added to the basal diet), and Mix (0.05% CB and 0.60% SC added to the basal diet) groups­and fed for fourteen days. Then, these goats were kept in a heat stress environment (with a temperature−humidity index of 87.04) for fourteen days. Then, the parameters of rumen fermentation and growth performance were measured. The results showed that the pH values, the activities of cellulolytic enzymes (avicelase, CMCaes, cellobiase, and xylanase), and the concentrations of ammonia-N, total volatile fatty acid, acetic acid, propionic acid, and butyric acid were significantly increased (p < 0.05) in the rumens of the CB, SC, and Mix groups compared to those of the control group. Moreover, the average daily gain and the digestibility of dry matter, neutral detergent fiber, and acid detergent fiber were significantly increased (p < 0.05) in the CB, SC, and Mix groups compared to those of the control group. These results suggest that these two probiotics and their mixture effectively alleviate the adverse effects of heat stress on rumen fermentation and growth performance via prophylactic feeding.

11.
Nat Mater ; 21(11): 1324-1332, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36138145

RESUMO

Bioinspired microrobots capable of actively moving in biological fluids have attracted considerable attention for biomedical applications because of their unique dynamic features that are otherwise difficult to achieve by their static counterparts. Here we use click chemistry to attach antibiotic-loaded neutrophil membrane-coated polymeric nanoparticles to natural microalgae, thus creating hybrid microrobots for the active delivery of antibiotics in the lungs in vivo. The microrobots show fast speed (>110 µm s-1) in simulated lung fluid and uniform distribution into deep lung tissues, low clearance by alveolar macrophages and superb tissue retention time (>2 days) after intratracheal administration to test animals. In a mouse model of acute Pseudomonas aeruginosa pneumonia, the microrobots effectively reduce bacterial burden and substantially lessen animal mortality, with negligible toxicity. Overall, these findings highlight the attractive functions of algae-nanoparticle hybrid microrobots for the active in vivo delivery of therapeutics to the lungs in intensive care unit settings.


Assuntos
Nanopartículas , Pneumonia Bacteriana , Camundongos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/microbiologia , Pseudomonas aeruginosa , Pulmão
12.
J Am Chem Soc ; 144(38): 17700-17708, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36112651

RESUMO

Conventional sandwich immunosensors rely on antibody recognition layers to selectively capture and detect target antigen analytes. However, the fabrication of these traditional affinity sensors is typically associated with lengthy and multistep surface modifications of electrodes and faces the challenge of nonspecific adsorption from complex sample matrices. Here, we report on a unique design of bioelectronic affinity sensors by using natural cell membranes as recognition layers for protein detection and prevention of biofouling. Specifically, we employ the human macrophage (MΦ) membrane together with the human red blood cell (RBC) membrane to coat electrochemical transducers through a one-step process. The natural protein receptors on the MΦ membrane are used to capture target antigens, while the RBC membrane effectively prevents nonspecific surface binding. In an attempt to detect tumor necrosis factor alpha (TNF-α) cytokine using the bioelectronic affinity sensor, it demonstrates a remarkable limit of detection of 150 pM. This new sensor design integrates natural cell membranes and electronic transduction, which offers synergistic functionalities toward a broad range of biosensing applications.


Assuntos
Técnicas Biossensoriais , Antígenos , Membrana Celular , Técnicas Eletroquímicas , Eletrodos , Humanos , Imunoensaio , Fator de Necrose Tumoral alfa
13.
Sci Robot ; 7(70): eabo4160, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36170380

RESUMO

The use of micromotors for active drug delivery via oral administration has recently gained considerable interest. However, efficient motor-assisted delivery into the gastrointestinal (GI) tract remains challenging, owing to the short propulsion lifetime of currently used micromotor platforms. Here, we report on an efficient algae-based motor platform, which takes advantage of the fast and long-lasting swimming behavior of natural microalgae in intestinal fluid to prolong local retention within the GI tract. Fluorescent dye or cell membrane-coated nanoparticle functionalized algae motors were further embedded inside a pH-sensitive capsule to enhance delivery to the small intestines. In vitro, the algae motors displayed a constant motion behavior in simulated intestinal fluid after 12 hours of continuous operation. When orally administered in vivo into mice, the algae motors substantially improved GI distribution of the dye payload compared with traditional magnesium-based micromotors, which are limited by short propulsion lifetimes, and they also enhanced retention of a model chemotherapeutic payload in the GI tract compared with a passive nanoparticle formulation. Overall, combining the efficient motion and extended lifetime of natural algae-based motors with the protective capabilities of oral capsules results in a promising micromotor platform capable of achieving greatly improved cargo delivery in GI tissue for practical biomedical applications.


Assuntos
Corantes Fluorescentes , Magnésio , Animais , Cápsulas , Sistemas de Liberação de Medicamentos , Trato Gastrointestinal , Camundongos
14.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3488-3494, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35850800

RESUMO

The taste is the quality attribute for the development and production of traditional Chinese medicine(TCM). To improve the medication compliance of the big brand TCM, Xiaoer Ganmao Oral Liquid, a correlation model between the electronic tongue sensor signal value and human sensory evaluation score was established, and an optimization strategy of taste improvement for Xiaoer Ganmao Oral Liquid was developed with the key techniques of statistical experimental design. Based on the above model, the optimal formulation was determined as follows: aspartame content of 1-2 mg·mL~(-1), acesulfame-K content of 1.5-3 mg·mL~(-1), and steviol glycoside content of 1-2 mg·mL~(-1). Furthermore, the optimal formulation was verified by human sensory evaluation. Therefore, the taste of Xiaoer Ganmao Oral Liquid was improved. Taking Xiaoer Ganmao Oral Liquid as an example, the present study developed the taste formulation optimization method based on the correlation between the electronic tongue and human sensory evaluation, which is expected to provide an important reference to improve the taste of oral liquid of TCM.


Assuntos
Nariz Eletrônico , Paladar , Humanos , Medicina Tradicional Chinesa
15.
Comput Biol Med ; 148: 105854, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863246

RESUMO

The development of noninvasive brain imaging such as resting-state functional magnetic resonance imaging (rs-fMRI) and its combination with AI algorithm provides a promising solution for the early diagnosis of Autism spectrum disorder (ASD). However, the performance of the current ASD classification based on rs-fMRI still needs to be improved. This paper introduces a classification framework to aid ASD diagnosis based on rs-fMRI. In the framework, we proposed a novel filter feature selection method based on the difference between step distribution curves (DSDC) to select remarkable functional connectivities (FCs) and utilized a multilayer perceptron (MLP) which was pretrained by a simplified Variational Autoencoder (VAE) for classification. We also designed a pipeline consisting of a normalization procedure and a modified hyperbolic tangent (tanh) activation function to replace the classical tanh function, further improving the model accuracy. Our model was evaluated by 10 times 10-fold cross-validation and achieved an average accuracy of 78.12%, outperforming the state-of-the-art methods reported on the same dataset. Given the importance of sensitivity and specificity in disease diagnosis, two constraints were designed in our model which can improve the model's sensitivity and specificity by up to 9.32% and 10.21%, respectively. The added constraints allow our model to handle different application scenarios and can be used broadly.


Assuntos
Transtorno do Espectro Autista , Encéfalo , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Redes Neurais de Computação
16.
Nat Biomed Eng ; 6(11): 1214-1224, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35534575

RESUMO

Implementations of wearable microneedle-based arrays of sensors for the monitoring of multiple biomarkers in interstitial fluid have lacked system integration and evidence of robust analytical performance. Here we report the development and testing of a fully integrated wearable array of microneedles for the wireless and continuous real-time sensing of two metabolites (lactate and glucose, or alcohol and glucose) in the interstitial fluid of volunteers performing common daily activities. The device works with a custom smartphone app for data capture and visualization, comprises reusable electronics and a disposable microneedle array, and is optimized for system integration, cost-effective fabrication via advanced micromachining, easier assembly, biocompatibility, pain-free skin penetration and enhanced sensitivity. Single-analyte and dual-analyte measurements correlated well with the corresponding gold-standard measurements in blood or breath. Further validation of the technology in large populations with concurrent validation of sensor readouts through centralized laboratory tests should determine the robustness and utility of real-time simultaneous monitoring of several biomarkers in interstitial fluid.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Líquido Extracelular , Glucose , Biomarcadores
17.
Adv Mater ; 34(52): e2201051, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35385160

RESUMO

Cancer is one of the most intractable diseases owing to its high mortality rate and lack of effective diagnostic and treatment tools. Advancements in micro-/nanorobot (MNR)-assisted sensing, imaging, and therapeutics offer unprecedented opportunities to develop MNR-based cancer theragnostic platforms. Unlike ordinary nanoparticles, which exhibit Brownian motion in biofluids, MNRs overcome viscous resistance in an ultralow Reynolds number (Re << 1) environment by effective self-propulsion. This unique locomotion property has motivated the advanced design and functionalization of MNRs as a basis for next-generation cancer-therapy platforms, which offer the potential for precise distribution and improved permeation of therapeutic agents. Enhanced barrier penetration, imaging-guided operation, and biosensing are additionally studied to enable the promising cancer-related applications of MNRs. Herein, the recent advances in MNR-based cancer therapy are comprehensively addresses, including actuation engines, diagnostics, medical imaging, and targeted drug delivery; promising research opportunities that can have a profound impact on cancer therapy over the next decade is highlighted.


Assuntos
Nanopartículas , Neoplasias , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/uso terapêutico
18.
Chem Rev ; 122(5): 5365-5403, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33522238

RESUMO

Over the past 15 years, the field of microrobotics has exploded with many research groups from around the globe contributing to numerous innovations that have led to exciting new capabilities and important applications, ranging from in vivo drug delivery, to intracellular biosensing, environmental remediation, and nanoscale fabrication. Smart responsive materials have had a profound impact on the field of microrobotics and have imparted small-scale robots with new functionalities and distinct capabilities. We have identified four large categories where the majority of future efforts must be allocated to push the frontiers of microrobots and where smart materials can have a major impact on such future advances. These four areas are the propulsion and biocompatibility of microrobots, the cooperation between individual units and human operators, and finally, the intelligence of microrobots. In this Review, we look critically at the latest developments in these four categories and discuss how smart materials contribute to the progress in the exciting field of microrobotics and will set the stage for the next generation of intelligent and programmable microrobots.


Assuntos
Robótica , Materiais Inteligentes , Sistemas de Liberação de Medicamentos , Humanos
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 2): 120522, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782265

RESUMO

variable selection is critical to select characteristic variables of critical quality attributes to improve model performance and interpret the identified variables in multivariate calibration. However, classical variable selection methods were developed and optimized by the prediction error. It is rare for the robustness evaluation of variable selection methods. In this study, the robustness of four different variable selection methods was investigated by adding different types of simulate noises to validation set and calibration and validation sets, respectively. The reproducibility as well as root mean squared error of prediction (RMSEP) were used together as common measure in assessing the robustness of different variable selection methods. The robustness of four variable selection methods method was investigated using two near infrared (NIR) datasets including open-source dataset of corn and Chinese herbal medicine (CHM) dataset. The result illustrated that variable importance in projection (VIP) was substantially more robust to additive noise, with smaller RMSEP value and high reproducibility. This provides a novel strategy for the reliability evaluation of variable selection methods in NIR model of critical quality attributes.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Calibragem , Análise dos Mínimos Quadrados , Reprodutibilidade dos Testes
20.
Adv Mater ; 34(5): e2107177, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34699649

RESUMO

There has been considerable interest in developing synthetic micromotors with biofunctional, versatile, and adaptive capabilities for biomedical applications. In this perspective, cell membrane-functionalized micromotors emerge as an attractive platform. This new class of micromotors demonstrates enhanced propulsion and compelling performance in complex biological environments, making them suitable for various in vivo applications, including drug delivery, detoxification, immune modulation, and phototherapy. This article reviews various proof-of-concept studies based on different micromotor designs and cell membrane coatings in these areas. The review focuses on the motor structure and performance relationship and highlights how cell membrane functionalization overcomes the obstacles faced by traditional synthetic micromotors while imparting them with unique capabilities. Overall, the cell membrane-functionalized micromotors are expected to advance micromotor research and facilitate its translation towards practical uses.


Assuntos
Sistemas de Liberação de Medicamentos , Membrana Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA